Sign-changing solutions to overdetermined elliptic problems in bounded domains arxiv.org/pdf/2211.14014

David Ruiz
IMAG, University of Granada

January 30, 2023

Outline

Introduction

Sign-changing solutions

Proof of the theorem

Outline

Introduction

Sign-changing solutions

Proof of the theorem

Overdetermined elliptic problems

We consider semilinear elliptic problems in the form:

$$
\begin{cases}-\Delta u=f(u) & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega \\ \partial_{\nu} u=\text { constant } & \text { on } \partial \Omega\end{cases}
$$

These problems appear quite naturally in the study of free boundaries in many different phenomena in Physics, like in capillarity, elasticity and others.

Because of the two boundary conditions one does not expect, in general, generic existence results.

The first rigidity result is due to J. Serrin in 1971: if Ω is bounded and u is positive, then necessarily Ω is a ball and u is radially symmetric. The proof is based on the moving plane method.

The BCN Conjecture

The case of unbounded domains was first treated by Berestycki, Caffarelli and Nirenberg in 1997.

They show that Ω must be a half-plane under assumptions of asymptotic flatness of the domain.

In that paper they proposed the following conjecture:

The BCN Conjecture

The case of unbounded domains was first treated by Berestycki, Caffarelli and Nirenberg in 1997.

They show that Ω must be a half-plane under assumptions of asymptotic flatness of the domain.

In that paper they proposed the following conjecture:
BCN Conjecture: If $u>0$ is bounded and $\mathbb{R}^{N} \backslash \bar{\Omega}$ is connected, then Ω is either a ball B^{N}, a half-space, a generalized cylinder $B^{k} \times \mathbb{R}^{N-k}$, or the complement of one of them.

The BCN conjecture is false!

This conjecture was disproved for $N \geq 3$ by P. Sicbaldi: he builds solutions in domains obtained as a periodic perturbation of a cylinder (for $f(u)=\lambda u$, see [Sicbaldi '10]).
This construction works also for $N=2$, but in this case $\mathbb{R}^{2} \backslash \Omega$ is not connected.

The BCN conjecture is false!

This conjecture was disproved for $N \geq 3$ by P. Sicbaldi: he builds solutions in domains obtained as a periodic perturbation of a cylinder (for $f(u)=\lambda u$, see [Sicbaldi '10]).
This construction works also for $N=2$, but in this case $\mathbb{R}^{2} \backslash \Omega$ is not connected.

The same result is true for $f=1$ [Fall, Minlend \& Weth '17], and also for more general terms $f(u)$ [R., Sicbaldi \& Wu '22].

The BCN conjecture is false!

This conjecture was disproved for $N \geq 3$ by P. Sicbaldi: he builds solutions in domains obtained as a periodic perturbation of a cylinder (for $f(u)=\lambda u$, see [Sicbaldi '10]).
This construction works also for $N=2$, but in this case $\mathbb{R}^{2} \backslash \Omega$ is not connected.

The same result is true for $f=1$ [Fall, Minlend \& Weth '17], and also for more general terms $f(u)$ [R., Sicbaldi \& Wu '22].
There are also nonradial solutions in exterior domains, even in dimension 2 ([Ros, R. \& Sicbaldi '20]).

Overdetermined problems and CMC surfaces

A formal analogy with constant mean curvature surfaces has been observed:

- Serrin's result is the counterpart of Alexandrov's one on CMC hypersurfaces.
- Sicbaldi example has a natural analogue in the Delaunay CMC surface.

The case of epigraphs has also been studied [Farina \& Valdinoci '10], [Del Pino, Pacard \& Wei '15], [Wang \& Wei '19], in connection with the Bernstein problem and the De Giorgi conjecture.

Overdetermined problems in other frameworks

1. Overdetermined problems on manifolds: [Pacard \& Sicbaldi '09], [Delay\& Sicbaldi '15], [Espinar \& Mao '18], [Dominguez-Vazquez, Enciso \& Peralta-Salas '19].

Of special interest is the case of the sphere: [Kumaresan \& Prajapat '98], [Fall, Minlend \& Weth '18], [Espinar \& Mazet '19], [R., Sicbaldi \& Wu pp].
2. Overdetermined problems on cones: [Pacella \& Tralli, '20], [lacopetti, Pacella \& Weth pp].

All previous results are concerned with positive solutions.

Outline

Introduction

Sign-changing solutions

Proof of the theorem

Sign-changing solutions to overdetermined problems

1. Fluid equations: Overdetermined problems appear also from stationary solutions of Euler equations, see for instance [Dominguez-Vazquez, Enciso \& Peralta-Salas '21], [Hamel \& Nadirashvili '21], [R. pp]. In this framework, the function u need not be positive, a priori.

Sign-changing solutions to overdetermined problems

1. Fluid equations: Overdetermined problems appear also from stationary solutions of Euler equations, see for instance [Dominguez-Vazquez, Enciso \& Peralta-Salas '21], [Hamel \& Nadirashvili '21], [R. pp]. In this framework, the function u need not be positive, a priori.
2. Schiffer Conjecture: Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain, and $w: \Omega \rightarrow \mathbb{R}$ a non-constant solution to the problem:

$$
\left\{\begin{array}{lr}
\Delta w+\lambda w=0 & \text { in } \Omega \\
w=c & \text { on } \partial \Omega \\
\frac{\partial w}{\partial \nu}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Then Ω is a ball and w is radially symmetric.
If we define $u=w-c$ we are led with a problem like (1) without any sign restriction on the function u.

A natural question

Does Serrin's result hold true without the positivity assumption?

A natural question

Does Serrin's result hold true without the positivity assumption?
The answer is no!
Theorem (R., preprint)
Let $N=2$, 3 or 4 . There exist bounded domains $\Omega \subset \mathbb{R}^{N}$ different from a ball such that the problem:

$$
\begin{cases}-\Delta u=u-\left(u^{+}\right)^{3} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ \partial_{\nu} u=\text { constant } \neq 0 & \text { on } \partial \Omega\end{cases}
$$

admits a sign-changing solution.

Scheme of the proof

1. First we find a 1-parametric family of sign-changing radial solutions u_{R} of the problem:

$$
\begin{cases}-\Delta u=u-\left(u^{+}\right)^{3} & \text { in } B(R) \\ u=0 & \text { on } \partial B(R)\end{cases}
$$

Scheme of the proof

1. First we find a 1-parametric family of sign-changing radial solutions u_{R} of the problem:

$$
\begin{cases}-\Delta u=u-\left(u^{+}\right)^{3} & \text { in } B(R) \\ u=0 & \text { on } \partial B(R)\end{cases}
$$

2. We show that the family u_{R} is nondegenerate for the Dirichlet operator restricted to radial functions.

Scheme of the proof

1. First we find a 1-parametric family of sign-changing radial solutions u_{R} of the problem:

$$
\begin{cases}-\Delta u=u-\left(u^{+}\right)^{3} & \text { in } B(R) \\ u=0 & \text { on } \partial B(R)\end{cases}
$$

2. We show that the family u_{R} is nondegenerate for the Dirichlet operator restricted to radial functions.
3. We show that the family u_{R} has degeneracies for the Dirichlet operator. Then we restric ourselves to a subinterval $I \subset \mathbb{R}$ such that if $R \in I$, the problem is nondegenerate.

Scheme of the proof

1. First we find a 1-parametric family of sign-changing radial solutions u_{R} of the problem:

$$
\begin{cases}-\Delta u=u-\left(u^{+}\right)^{3} & \text { in } B(R) \\ u=0 & \text { on } \partial B(R)\end{cases}
$$

2. We show that the family u_{R} is nondegenerate for the Dirichlet operator restricted to radial functions.
3. We show that the family u_{R} has degeneracies for the Dirichlet operator. Then we restric ourselves to a subinterval $I \subset \mathbb{R}$ such that if $R \in I$, the problem is nondegenerate.
4. The nondegeneracy allows us to define a nonlinear operator $F(R, v)$ whose zeroes are solutions of our problem.

Scheme of the proof

1. First we find a 1-parametric family of sign-changing radial solutions u_{R} of the problem:

$$
\begin{cases}-\Delta u=u-\left(u^{+}\right)^{3} & \text { in } B(R) \\ u=0 & \text { on } \partial B(R)\end{cases}
$$

2. We show that the family u_{R} is nondegenerate for the Dirichlet operator restricted to radial functions.
3. We show that the family u_{R} has degeneracies for the Dirichlet operator. Then we restric ourselves to a subinterval $I \subset \mathbb{R}$ such that if $R \in I$, the problem is nondegenerate.
4. The nondegeneracy allows us to define a nonlinear operator $F(R, v)$ whose zeroes are solutions of our problem.
5. We prove a local bifurcation result for such operator F.

Outline

Introduction

Sign-changing solutions

Proof of the theorem

1. The radial solutions

The information about the radial eigenvalues of the laplacian is given by the radial solution of the problem $-\Delta U=U$.

The function U can be written by using Bessel functions of the first kind: $U(r)=r^{1-N / 2} J_{N / 2-1}(r), r=|x|$.

1. The radial solutions

First we build the positive part of the solution. For any $p>0$, we consider the Euler-Lagrange functional of the Allen-Cahn equation:

$$
F: H_{0}^{1}(B(p)) \rightarrow \mathbb{R}, F(z)=\int_{B(p)} \frac{1}{2}|\nabla z|^{2}+\frac{1}{4}\left(1-z^{2}\right)^{2}
$$

F is weak lower semi-continous and coercive, and then it achieves a minimum.

1. The radial solutions

First we build the positive part of the solution. For any $p>0$, we consider the Euler-Lagrange functional of the Allen-Cahn equation:

$$
F: H_{0}^{1}(B(p)) \rightarrow \mathbb{R}, F(z)=\int_{B(p)} \frac{1}{2}|\nabla z|^{2}+\frac{1}{4}\left(1-z^{2}\right)^{2}
$$

F is weak lower semi-continous and coercive, and then it achieves a minimum.

Clearly 0 is a solution, and its linearization is $-\Delta \phi-\phi$. But this operator is semipositive definite only if $p \leq R_{1}$.

For $p>R_{1}$ the minimizer is not trivial. We can assume that it is positive (and radial).

1. The radial solutions

This solution continues with negative values, and hits again the x-axes at some $R>R_{2}$, by separation of zeroes of Sturm.

1. The radial solutions

For any $R>R_{2}$, there exists a sign-changing solution u_{R}, which vanishes at a point $p_{R} \in(0, R)$. Moreover, $\lim _{R \rightarrow R_{2}} u_{R}=0$ and

$$
\lim _{R \rightarrow+\infty} u_{R}\left(\cdot-p_{R}\right)=u_{0}, \quad u_{0}(r)= \begin{cases}-\tanh \left(\frac{r}{\sqrt{2}}\right) & r \leq 0, \\ -\frac{1}{\sqrt{2}} \sin (r) & r \in(0, \pi] .\end{cases}
$$

2. Radial nondegeneracy

We define $L=-\Delta-1+3\left(u_{R}^{+}\right)^{2}$ and $\bar{\lambda}_{k}$ its radial eigenvalues.
a) $\bar{\lambda}_{1}<0$. Indeed, take $\phi=u_{R}^{-}$. Then,

$$
Q_{D}(\phi):=\int_{B(R)} L(\phi) \phi=0 .
$$

If Q_{D} is semipositive definite, then u_{R}^{-}would be an eigenfunction, but $u_{R}^{-}=0$ in $\left(0, p_{R}\right)$. Hence $\bar{\lambda}_{1}<0$.

2. Radial nondegeneracy

We define $L=-\Delta-1+3\left(u_{R}^{+}\right)^{2}$ and $\bar{\lambda}_{k}$ its radial eigenvalues.
a) $\bar{\lambda}_{1}<0$. Indeed, take $\phi=u_{R}^{-}$. Then,

$$
Q_{D}(\phi):=\int_{B(R)} L(\phi) \phi=0 .
$$

If Q_{D} is semipositive definite, then u_{R}^{-}would be an eigenfunction, but $u_{R}^{-}=0$ in $\left(0, p_{R}\right)$. Hence $\bar{\lambda}_{1}<0$.
b) $\bar{\lambda}_{2}>0$. Take now $\bar{\phi}_{1}, \bar{\phi}_{2}$ eigenfunctions corresponding to $\bar{\lambda}_{1}$, $\bar{\lambda}_{2}$. Define $\phi=\alpha_{1} \bar{\phi}_{1}+\alpha_{2} \bar{\phi}_{2}$ such that $\phi\left(p_{R}\right)=0$. Then:

$$
Q_{D}(\phi)=\int_{B\left(p_{R}\right)} L(\phi) \phi+\int_{B(R) \backslash B\left(p_{R}\right)} L(\phi) \phi>0 .
$$

As a consequence $\bar{\lambda}_{2}>0$.
In particular u_{R} form a smooth 1-parametric family of solutions.

3. Nonradial degeneracies

Let us consider a symmetry group $G \subset O(N)$, and define λ_{k} the G-symmetric eigenvalues of L. Clearly $\lambda_{1}=\bar{\lambda}_{1}<0$.

3. Nonradial degeneracies

Let us consider a symmetry group $G \subset O(N)$, and define λ_{k} the G-symmetric eigenvalues of L. Clearly $\lambda_{1}=\bar{\lambda}_{1}<0$.
a) If $R \sim R_{2}$ and G is sufficiently large, then $\lambda_{2}>0$.

If $\lambda_{2}=\bar{\lambda}_{2}$, we are done. Otherwise observe that, as $R \rightarrow R_{2}$,

$$
Q_{D}(\phi) \sim \int_{B\left(R_{2}\right)}|\nabla \phi|^{2}-\phi^{2}
$$

3. Nonradial degeneracies

Let us consider a symmetry group $G \subset O(N)$, and define λ_{k} the G-symmetric eigenvalues of L. Clearly $\lambda_{1}=\bar{\lambda}_{1}<0$.
a) If $R \sim R_{2}$ and G is sufficiently large, then $\lambda_{2}>0$.

If $\lambda_{2}=\bar{\lambda}_{2}$, we are done. Otherwise observe that, as $R \rightarrow R_{2}$,

$$
Q_{D}(\phi) \sim \int_{B\left(R_{2}\right)}|\nabla \phi|^{2}-\phi^{2}
$$

This operator becomes negative for some nonradial eigenfunctions. If we take G a group that excludes all those, then $\lambda_{2}>0$.

3. Nonradial degeneracies

b) For any group G, we can take R large enough so that $\lambda_{2}<0$.

Take as a test function $\phi=\xi\left(r-p_{R}\right) \vartheta(\theta)$, where

1. $\xi:(-\infty, \pi) \rightarrow \mathbb{R}$ has compact support, and
2. $\vartheta: \mathbb{S}^{N-1} \rightarrow \mathbb{R}$ is any G-symmetric spherical harmonic with eigenvalue γ.

Clearly ϕ is orthogonal to $\bar{\phi}_{1}$.

3. Nonradial degeneracies

b) For any group G, we can take R large enough so that $\lambda_{2}<0$.

Take as a test function $\phi=\xi\left(r-p_{R}\right) \vartheta(\theta)$, where

1. $\xi:(-\infty, \pi) \rightarrow \mathbb{R}$ has compact support, and
2. $\vartheta: \mathbb{S}^{N-1} \rightarrow \mathbb{R}$ is any G-symmetric spherical harmonic with eigenvalue γ.

Clearly ϕ is orthogonal to $\bar{\phi}_{1}$. Moreover,

$$
Q_{D}(\psi)=R^{N-1} \hat{Q}_{D}(\xi)+\gamma R^{N-3} \int \xi(r)^{2} d r+\text { l.o.t. }
$$

where $\hat{Q}_{D}: H_{0}^{1}(-\infty, \pi) \rightarrow \mathbb{R}$ is defined as:

$$
\hat{Q}_{D}(\xi)=\int_{-\infty}^{\pi}\left|\xi^{\prime}(r)\right|^{2}-\xi^{2}+3\left(u_{0}^{+}\right)^{2} \xi^{2}
$$

3. Nonradial degeneracies

Recall that:

$$
u_{0}(r)= \begin{cases}-\tanh \left(\frac{r}{\sqrt{2}}\right) & r \leq 0, \\ -\frac{1}{\sqrt{2}} \sin (r) & r \in(0, \pi]\end{cases}
$$

is a solution of the ODE $-u^{\prime \prime}-u+\left(u^{+}\right)^{3}=0$, and \hat{Q}_{D} is the quadratic form associated to the linearized operator.

3. Nonradial degeneracies

Recall that:

$$
u_{0}(r)= \begin{cases}-\tanh \left(\frac{r}{\sqrt{2}}\right) & r \leq 0, \\ -\frac{1}{\sqrt{2}} \sin (r) & r \in(0, \pi]\end{cases}
$$

is a solution of the ODE $-u^{\prime \prime}-u+\left(u^{+}\right)^{3}=0$, and \hat{Q}_{D} is the quadratic form associated to the linearized operator.
Again, $\hat{Q}_{D}\left(u_{0}^{-}\right)=0$ and $u_{0}^{-}=0$ in $(-\infty, 0)$, hence \hat{Q}_{D} achieves negative values. By density we can take a compactly supported function ξ with $\hat{Q}_{D}(\xi)<0$.

3. Nonradial degeneracies

Recall that:

$$
u_{0}(r)= \begin{cases}-\tanh \left(\frac{r}{\sqrt{2}}\right) & r \leq 0, \\ -\frac{1}{\sqrt{2}} \sin (r) & r \in(0, \pi]\end{cases}
$$

is a solution of the ODE $-u^{\prime \prime}-u+\left(u^{+}\right)^{3}=0$, and \hat{Q}_{D} is the quadratic form associated to the linearized operator.
Again, $\hat{Q}_{D}\left(u_{0}^{-}\right)=0$ and $u_{0}^{-}=0$ in $(-\infty, 0)$, hence \hat{Q}_{D} achieves negative values. By density we can take a compactly supported function ξ with $\hat{Q}_{D}(\xi)<0$.

We define $\bar{R}>R_{2}$ as the first value for which $\lambda_{2}=0$: that is, $\lambda_{2}>0$ if $R \in\left(R_{2}, \bar{R}\right)$ and $\lambda_{2}=0$ if $R=\bar{R}$.

From now on we restrict ourselves to $R \in\left(R_{2}, \bar{R}\right)$.

4. The nonlinear Dirichlet-to-Neumann operator

Fix $R \in\left(R_{2}, \bar{R}\right)$. Given a function $w: \mathbb{S}^{N-1} \longmapsto(0, \infty)$, let us denote $B(w)$ its radial graph,

$$
B(w):=\left\{x \in \mathbb{R}^{N}:|x|<w(x /|x|)\right\} .
$$

4. The nonlinear Dirichlet-to-Neumann operator

By the Inverse Function Theorem, for all $v \in C_{G}^{2, \alpha}\left(\mathbb{S}^{N-1}\right)$ small, there exists a positive solution $u=u(R, v)$ to the problem

$$
\left\{\begin{array}{rccc}
-\Delta u= & u-\left(u^{+}\right)^{3} & \text { in } \quad B(R+v) \\
u= & 0 & \text { on } \quad \partial B(R+v)
\end{array}\right.
$$

4. The nonlinear Dirichlet-to-Neumann operator

By the Inverse Function Theorem, for all $v \in C_{G}^{2, \alpha}\left(\mathbb{S}^{N-1}\right)$ small, there exists a positive solution $u=u(R, v)$ to the problem

$$
\left\{\begin{array}{rcccc}
-\Delta u= & u-\left(u^{+}\right)^{3} & \text { in } & B(R+v) \\
u= & 0 & \text { on } & \partial B(R+v)
\end{array}\right.
$$

We define the Dirichlet-to-Neumann operator:

$$
F(R, v)=\frac{\partial u}{\partial \nu}-\frac{1}{|\partial B(R+v)|} \int_{\partial B(R+v)} \frac{\partial u}{\partial \nu} d x
$$

Clearly, we are done if we prove the existence of nontrivial solutions of the equation $F(R, v)=0$. From now on, we assume that v has 0 mean.

A necessary condition for bifurcation is that $D_{v} F(R, 0)$ becomes degenerate.

4. The nonlinear Dirichlet-to-Neumann operator

Proposition

$D_{v} F(R, 0)=c_{R} H_{R}(v)$, where c_{R} is a constant and H_{R} is defined as:

$$
\begin{equation*}
H_{R}(v)=\partial_{\nu}\left(\psi_{v}\right)+\frac{N-1}{R} v . \tag{2}
\end{equation*}
$$

Here ψ_{v} is a solution of the linear problem:

$$
\left\{\begin{array}{lc}
-\Delta \psi_{v}-\psi_{v}+3\left(u_{\rho}^{+}\right)^{2} \psi_{v}=0, & \text { in } B(R) \\
\psi_{v}=v & \text { on } \partial B(R)
\end{array}\right.
$$

Such solution exists and is unique by the Dirichlet nondegeneracy of the problem.

4. The nonlinear Dirichlet-to-Neumann operator

Proposition

$D_{v} F(R, 0)=c_{R} H_{R}(v)$, where c_{R} is a constant and H_{R} is defined as:

$$
\begin{equation*}
H_{R}(v)=\partial_{\nu}\left(\psi_{v}\right)+\frac{N-1}{R} v . \tag{2}
\end{equation*}
$$

Here ψ_{v} is a solution of the linear problem:

$$
\left\{\begin{array}{lc}
-\Delta \psi_{v}-\psi_{v}+3\left(u_{\rho}^{+}\right)^{2} \psi_{v}=0, & \text { in } B(R) \\
\psi_{v}=v & \text { on } \partial B(R)
\end{array}\right.
$$

Such solution exists and is unique by the Dirichlet nondegeneracy of the problem.

Moreover, if v has 0 mean then $\psi_{v} \in E$, where:

$$
E=\left\{\phi \in H_{G}^{1}(B): \int_{B} \phi(x) g(x) d x=0 \quad \forall g \in L_{r}^{2}(B)\right\}
$$

5. The local bifurcation

We study the quadratic form associated to H :

$$
\begin{gathered}
\int_{\partial B(R)} H(v) v=Q\left(\psi_{v}\right), \\
Q(\phi)=\int_{B(R)}\left(|\nabla \phi|^{2}-\phi^{2}+3\left(u_{\rho}^{+}\right)^{2} \phi^{2}\right)+\frac{(N-1)}{R} \int_{\partial B} \phi^{2} .
\end{gathered}
$$

5. The local bifurcation

We study the quadratic form associated to H :

$$
\begin{gathered}
\int_{\partial B(R)} H(v) v=Q\left(\psi_{v}\right), \\
Q(\phi)=\int_{B(R)}\left(|\nabla \phi|^{2}-\phi^{2}+3\left(u_{\rho}^{+}\right)^{2} \phi^{2}\right)+\frac{(N-1)}{R} \int_{\partial B} \phi^{2} .
\end{gathered}
$$

a) If $R \sim R_{2}$ and G is large enough, $\left.Q\right|_{E}$ is positive definite.

$$
\begin{aligned}
Q(\phi) & \sim \int_{B\left(R_{2}\right)}\left(|\nabla \phi|^{2}-\phi^{2}\right)+\frac{N-1}{R_{2}} \int_{\partial B\left(R_{2}\right)} \phi^{2} \\
& \geq \int_{B\left(R_{2}\right)}\left(|\nabla \phi|^{2}-\phi^{2}\right) .
\end{aligned}
$$

We are done if G excludes all nonradial eigenvalues smaller than 1 of the laplacian under Neumann boundary conditions in $B\left(R_{2}\right)$.

5. The local bifurcation

b) If $R \sim \bar{R}$, then $\left.Q\right|_{E}$ becomes negative.

Observe that $\left.Q_{D}\right|_{E}$ is nothing but $\left.Q\right|_{E}$ restricted to functions which vanish at $\partial B(R)$.

5. The local bifurcation

b) If $R \sim \bar{R}$, then $\left.Q\right|_{E}$ becomes negative.

Observe that $\left.Q_{D}\right|_{E}$ is nothing but $\left.Q\right|_{E}$ restricted to functions which vanish at $\partial B(R)$.
Recall that $\left.Q_{D}\right|_{E}$ is positive definite for $R \in\left(R_{2}, \bar{R}\right)$ and Q_{D} is positive semidefinite for $R=\bar{R}$.

Then the operator H becomes degenerate at some $R^{*} \in\left(R_{2}, \bar{R}\right)$!

5. The local bifurcation

We will use Krasnoselskii bifurcation theorem, which requires that the kernel of H at $R=R^{*}$ is odd.

5. The local bifurcation

We will use Krasnoselskii bifurcation theorem, which requires that the kernel of H at $R=R^{*}$ is odd.

The kernel of H is formed by functions in the form:

$$
\phi=f(r) \vartheta(\theta)
$$

where we are using spherical coordinates and:

1. $f(r)$ is the solution of an ODE problem, which is unique;
2. ϑ is a nontrivial eigenfunction of $-\Delta$ on \mathbb{S}^{N-1} at the first G-symmetric eigenvalue σ.

If such eigenvalue σ has odd multiplicity, then the Krasnoselskii bifurcation theorem can be applied and we obtain local bifurcation.

On the symmetry group G

In sum, we need a symmetry group $G \subset O(N)$ such that:

1. The G-symmetric nonradial Dirichlet eigenvalues of Δ in $B\left(R_{2}\right)$ are all bigger than 1.
2. The G-symmetric nonradial Neumann eigenvalues of Δ in $B\left(R_{2}\right)$ are all bigger than 1 .
3. The first G-symmetric eigenvalue σ of Δ on \mathbb{S}^{N-1} has odd multiplicity.

If $N=2,3,4$ or 5 , this is satisfied if $\sigma=k(k+N-2)$ with $k \geq 5$ and with odd multiplicity.

For $N=6$ we need $k \geq 6$.

On the symmetry group G

1. If $N=2$ it suffices to take $G=\mathbb{D}_{k}$ the dihedral group, with $k \geq 5$.

On the symmetry group G

1. If $N=2$ it suffices to take $G=\mathbb{D}_{k}$ the dihedral group, with $k \geq 5$.
2. If $N=3$, we take G the symmetry group of the icosahedron, for which $k=6$ and the multiplicity is 1 ([Laporte '48]).

On the symmetry group G

1. If $N=2$ it suffices to take $G=\mathbb{D}_{k}$ the dihedral group, with $k \geq 5$.
2. If $N=3$, we take G the symmetry group of the icosahedron, for which $k=6$ and the multiplicity is 1 ([Laporte '48]).
3. In \mathbb{R}^{4} there exists a regular polytope called hyper-icosahedron, with 600 tetrahedral cells and 120 vertices.

Its group of rotations satisfies that $k=12$ and its multiplicity is 1 ([Nelson \& Widom '84]).

On the symmetry group G

1. If $N=2$ it suffices to take $G=\mathbb{D}_{k}$ the dihedral group, with $k \geq 5$.
2. If $N=3$, we take G the symmetry group of the icosahedron, for which $k=6$ and the multiplicity is 1 ([Laporte '48]).
3. In \mathbb{R}^{4} there exists a regular polytope called hyper-icosahedron, with 600 tetrahedral cells and 120 vertices.

Its group of rotations satisfies that $k=12$ and its multiplicity is 1 ([Nelson \& Widom '84]).

For $N \geq 5$ the only regular polytopes are the hyper-tetrahedron, the hyper-cube and the hyper-octahedron, and their symmetry groups are too small.

Thank you for your attention!

