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Overdetermined elliptic problems

We consider semilinear elliptic problems in the form:
−∆u = f (u) in Ω,
u = 0 on ∂Ω,
∂νu = constant on ∂Ω.

(1)

These problems appear quite naturally in the study of free
boundaries in many different phenomena in Physics, like in
capillarity, elasticity and others.

Because of the two boundary conditions one does not expect, in
general, generic existence results.

The first rigidity result is due to J. Serrin in 1971: if Ω is bounded
and u is positive, then necessarily Ω is a ball and u is radially
symmetric. The proof is based on the moving plane method.



The BCN Conjecture

The case of unbounded domains was first treated by Berestycki,
Caffarelli and Nirenberg in 1997.

They show that Ω must be a half-plane under assumptions of
asymptotic flatness of the domain.

In that paper they proposed the following conjecture:

BCN Conjecture: If u > 0 is bounded and RN\Ω is connected,
then Ω is either a ball BN , a half-space, a generalized cylinder
Bk × RN−k , or the complement of one of them.
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The BCN conjecture is false!

This conjecture was disproved for N ≥ 3 by P. Sicbaldi: he builds
solutions in domains obtained as a periodic perturbation of a
cylinder (for f (u) = λu, see [Sicbaldi ’10]).

This construction works also for N = 2, but in this case R2 \ Ω is
not connected.

The same result is true for f = 1 [Fall, Minlend & Weth ’17], and
also for more general terms f (u) [R., Sicbaldi & Wu ’22].

There are also nonradial solutions in exterior domains, even in
dimension 2 ([Ros, R. & Sicbaldi ’20]).
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Overdetermined problems and CMC surfaces

A formal analogy with constant mean curvature surfaces has been
observed:

I Serrin’s result is the counterpart of Alexandrov’s one on CMC
hypersurfaces.

I Sicbaldi example has a natural analogue in the Delaunay CMC
surface.

The case of epigraphs has also been studied [Farina & Valdinoci
’10], [Del Pino, Pacard & Wei ’15], [Wang & Wei ’19], in
connection with the Bernstein problem and the De Giorgi
conjecture.



Overdetermined problems in other frameworks

1. Overdetermined problems on manifolds: [Pacard &
Sicbaldi ’09], [Delay& Sicbaldi ’15], [Espinar & Mao ’18],
[Dominguez-Vazquez, Enciso & Peralta-Salas ’19].

Of special interest is the case of the sphere: [Kumaresan &
Prajapat ’98], [Fall, Minlend & Weth ’18], [Espinar & Mazet
’19], [R., Sicbaldi & Wu pp].

2. Overdetermined problems on cones: [Pacella & Tralli, ’20],
[Iacopetti, Pacella & Weth pp].

All previous results are concerned with positive solutions.
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Sign-changing solutions to overdetermined problems

1. Fluid equations: Overdetermined problems appear also from
stationary solutions of Euler equations, see for instance
[Dominguez-Vazquez, Enciso & Peralta-Salas ’21], [Hamel &
Nadirashvili ’21], [R. pp]. In this framework, the function u
need not be positive, a priori.

2. Schiffer Conjecture: Let Ω ⊂ RN be a bounded regular
domain, and w : Ω→ R a non-constant solution to the
problem: 

∆w + λw = 0 in Ω,
w = c on ∂Ω,
∂w
∂ν = 0 on ∂Ω.

Then Ω is a ball and w is radially symmetric.

If we define u = w − c we are led with a problem like (1)
without any sign restriction on the function u.
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A natural question

Does Serrin’s result hold true without the positivity assumption?

The answer is no!

Theorem (R., preprint)

Let N = 2, 3 or 4. There exist bounded domains Ω ⊂ RN different
from a ball such that the problem:

−∆u = u − (u+)3 in Ω,

u = 0 on ∂Ω,

∂νu = constant 6= 0 on ∂Ω,

admits a sign-changing solution.
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Scheme of the proof

1. First we find a 1-parametric family of sign-changing radial
solutions uR of the problem:{

−∆u = u − (u+)3 in B(R),

u = 0 on ∂B(R).

2. We show that the family uR is nondegenerate for the Dirichlet
operator restricted to radial functions.

3. We show that the family uR has degeneracies for the Dirichlet
operator. Then we restric ourselves to a subinterval I ⊂ R
such that if R ∈ I , the problem is nondegenerate.

4. The nondegeneracy allows us to define a nonlinear operator
F (R, v) whose zeroes are solutions of our problem.

5. We prove a local bifurcation result for such operator F .
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1. The radial solutions
The information about the radial eigenvalues of the laplacian is
given by the radial solution of the problem −∆U = U.

The function U can be written by using Bessel functions of the
first kind: U(r) = r1−N/2JN/2−1(r), r = |x |.



1. The radial solutions

First we build the positive part of the solution. For any p > 0, we
consider the Euler-Lagrange functional of the Allen-Cahn equation:

F : H1
0 (B(p))→ R, F (z) =

∫
B(p)

1

2
|∇z |2 +

1

4
(1− z2)2

F is weak lower semi-continous and coercive, and then it achieves
a minimum.

Clearly 0 is a solution, and its linearization is −∆φ− φ. But this
operator is semipositive definite only if p ≤ R1.

For p > R1 the minimizer is not trivial. We can assume that it is
positive (and radial).



1. The radial solutions

First we build the positive part of the solution. For any p > 0, we
consider the Euler-Lagrange functional of the Allen-Cahn equation:

F : H1
0 (B(p))→ R, F (z) =

∫
B(p)

1

2
|∇z |2 +

1

4
(1− z2)2

F is weak lower semi-continous and coercive, and then it achieves
a minimum.

Clearly 0 is a solution, and its linearization is −∆φ− φ. But this
operator is semipositive definite only if p ≤ R1.

For p > R1 the minimizer is not trivial. We can assume that it is
positive (and radial).



1. The radial solutions
This solution continues with negative values, and hits again the
x-axes at some R > R2, by separation of zeroes of Sturm.



1. The radial solutions
For any R > R2, there exists a sign-changing solution uR , which
vanishes at a point pR ∈ (0,R). Moreover, limR→R2 uR = 0 and

lim
R→+∞

uR(· − pR) = u0, u0(r) =

{
− tanh( r√

2
) r ≤ 0,

− 1√
2

sin(r) r ∈ (0, π].



2. Radial nondegeneracy

We define L = −∆− 1 + 3(u+R )2 and λ̄k its radial eigenvalues.

a) λ̄1 < 0. Indeed, take φ = u−R . Then,

QD(φ) :=

∫
B(R)

L(φ)φ = 0.

If QD is semipositive definite, then u−R would be an eigenfunction,
but u−R = 0 in (0, pR). Hence λ̄1 < 0.

b) λ̄2 > 0. Take now φ̄1, φ̄2 eigenfunctions corresponding to λ̄1,
λ̄2. Define φ = α1φ̄1 + α2φ̄2 such that φ(pR) = 0. Then:

QD(φ) =

∫
B(pR)

L(φ)φ+

∫
B(R)\B(pR)

L(φ)φ > 0.

As a consequence λ̄2 > 0.

In particular uR form a smooth 1-parametric family of solutions.
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3. Nonradial degeneracies

Let us consider a symmetry group G ⊂ O(N), and define λk the
G -symmetric eigenvalues of L. Clearly λ1 = λ̄1 < 0.

a) If R ∼ R2 and G is sufficiently large, then λ2 > 0.

If λ2 = λ̄2, we are done. Otherwise observe that, as R → R2,

QD(φ) ∼
∫
B(R2)

|∇φ|2 − φ2.

This operator becomes negative for some nonradial eigenfunctions.
If we take G a group that excludes all those, then λ2 > 0.
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3. Nonradial degeneracies

b) For any group G , we can take R large enough so that λ2 < 0.

Take as a test function φ = ξ(r − pR)ϑ(θ), where

1. ξ : (−∞, π)→ R has compact support, and

2. ϑ : SN−1 → R is any G -symmetric spherical harmonic with
eigenvalue γ.

Clearly φ is orthogonal to φ̄1.

Moreover,

QD(ψ) = RN−1Q̂D(ξ) + γ RN−3
∫
ξ(r)2 dr + l .o.t.,

where Q̂D : H1
0 (−∞, π)→ R is defined as:

Q̂D(ξ) =

∫ π

−∞
|ξ′(r)|2 − ξ2 + 3(u+0 )2ξ2.
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3. Nonradial degeneracies

Recall that:

u0(r) =

{
− tanh( r√

2
) r ≤ 0,

− 1√
2

sin(r) r ∈ (0, π],

is a solution of the ODE −u′′ − u + (u+)3 = 0, and Q̂D is the
quadratic form associated to the linearized operator.

Again, Q̂D(u−0 ) = 0 and u−0 = 0 in (−∞, 0), hence Q̂D achieves
negative values. By density we can take a compactly supported
function ξ with Q̂D(ξ) < 0.

We define R̄ > R2 as the first value for which λ2 = 0: that is,
λ2 > 0 if R ∈ (R2, R̄) and λ2 = 0 if R = R̄.

From now on we restrict ourselves to R ∈ (R2, R̄).
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4. The nonlinear Dirichlet-to-Neumann operator

Fix R ∈ (R2, R̄). Given a function w : SN−1 7−→ (0,∞), let us
denote B(w) its radial graph,

B(w) :=
{
x ∈ RN : |x | < w(x/|x |)

}
.



4. The nonlinear Dirichlet-to-Neumann operator

By the Inverse Function Theorem, for all v ∈ C 2,α
G (SN−1) small,

there exists a positive solution u = u(R, v) to the problem{
−∆u = u − (u+)3 in B(R + v),

u = 0 on ∂B(R + v) .

We define the Dirichlet-to-Neumann operator:

F (R, v) =
∂u

∂ν
− 1

|∂B(R + v)|

∫
∂B(R+v)

∂u

∂ν
dx ,

Clearly, we are done if we prove the existence of nontrivial
solutions of the equation F (R, v) = 0. From now on, we assume
that v has 0 mean.

A necessary condition for bifurcation is that DvF (R, 0) becomes
degenerate.
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4. The nonlinear Dirichlet-to-Neumann operator

Proposition

DvF (R, 0) = cR HR(v), where cR is a constant and HR is defined
as:

HR(v) = ∂ν(ψv ) +
N − 1

R
v . (2)

Here ψv is a solution of the linear problem:{
−∆ψv − ψv + 3(u+ρ )2ψv = 0, in B(R),

ψv = v on ∂B(R).

Such solution exists and is unique by the Dirichlet nondegeneracy
of the problem.

Moreover, if v has 0 mean then ψv ∈ E , where:

E = {φ ∈ H1
G (B) :

∫
B
φ(x)g(x) dx = 0 ∀ g ∈ L2r (B)}.



4. The nonlinear Dirichlet-to-Neumann operator

Proposition

DvF (R, 0) = cR HR(v), where cR is a constant and HR is defined
as:

HR(v) = ∂ν(ψv ) +
N − 1

R
v . (2)

Here ψv is a solution of the linear problem:{
−∆ψv − ψv + 3(u+ρ )2ψv = 0, in B(R),

ψv = v on ∂B(R).

Such solution exists and is unique by the Dirichlet nondegeneracy
of the problem.

Moreover, if v has 0 mean then ψv ∈ E , where:

E = {φ ∈ H1
G (B) :

∫
B
φ(x)g(x) dx = 0 ∀ g ∈ L2r (B)}.



5. The local bifurcation

We study the quadratic form associated to H:∫
∂B(R)

H(v)v = Q(ψv ),

Q(φ) =

∫
B(R)

(
|∇φ|2 − φ2 + 3(u+ρ )2φ2

)
+

(N − 1)

R

∫
∂B
φ2.

a) If R ∼ R2 and G is large enough, Q|E is positive definite.

Q(φ) ∼
∫
B(R2)

(
|∇φ|2 − φ2

)
+

N − 1

R2

∫
∂B(R2)

φ2

≥
∫
B(R2)

(
|∇φ|2 − φ2

)
.

We are done if G excludes all nonradial eigenvalues smaller than 1
of the laplacian under Neumann boundary conditions in B(R2).
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5. The local bifurcation

b) If R ∼ R̄, then Q|E becomes negative.
Observe that QD |E is nothing but Q|E restricted to functions
which vanish at ∂B(R).

Recall that QD |E is positive definite for R ∈ (R2, R̄) and QD is
positive semidefinite for R = R̄.

R0R*

λ1(Q0)
λ1(Q)

D

Les

WrsfAHle

d

Then the operator H becomes degenerate at some R∗ ∈ (R2, R̄)!
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5. The local bifurcation

We will use Krasnoselskii bifurcation theorem, which requires that
the kernel of H at R = R∗ is odd.

The kernel of H is formed by functions in the form:

φ = f (r)ϑ(θ),

where we are using spherical coordinates and:

1. f (r) is the solution of an ODE problem, which is unique;

2. ϑ is a nontrivial eigenfunction of −∆ on SN−1 at the first
G -symmetric eigenvalue σ.

If such eigenvalue σ has odd multiplicity, then the Krasnoselskii
bifurcation theorem can be applied and we obtain local bifurcation.
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On the symmetry group G

In sum, we need a symmetry group G ⊂ O(N) such that:

1. The G -symmetric nonradial Dirichlet eigenvalues of ∆ in
B(R2) are all bigger than 1.

2. The G -symmetric nonradial Neumann eigenvalues of ∆ in
B(R2) are all bigger than 1.

3. The first G -symmetric eigenvalue σ of ∆ on SN−1 has odd
multiplicity.

If N = 2, 3, 4 or 5, this is satisfied if σ = k(k + N − 2) with
k ≥ 5 and with odd multiplicity.

For N = 6 we need k ≥ 6.



On the symmetry group G

1. If N = 2 it suffices to take G = Dk the dihedral group, with
k ≥ 5.

2. If N = 3, we take G the symmetry group of the icosahedron,
for which k = 6 and the multiplicity is 1 ([Laporte ’48]).

3. In R4 there exists a regular polytope called hyper-icosahedron,
with 600 tetrahedral cells and 120 vertices.

Its group of rotations satisfies that k = 12 and its multiplicity
is 1 ([Nelson & Widom ’84]).

For N ≥ 5 the only regular polytopes are the hyper-tetrahedron,
the hyper-cube and the hyper-octahedron, and their symmetry
groups are too small.
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Thank you for your attention!
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